Aguarde...
 

PERIODIC SOLUTIONS OF FIRST-ORDER FUNCTIONAL

DIFFERENTIAL EQUATIONS IN POPULATION DYNAMICS


de: R$ 339,53

por: 

R$ 305,59preço +cultura

em até 10x de R$ 30,56 sem juros no cartão, ver mais opções

Produto disponível no mesmo dia no aplicativo Kobo, após a confirmação  do pagamento!

Sinopse

This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functional differential equations with real-world applications, particularly with regard to the Lasota-Wazewska model, the Hematopoiesis model, the Nicholsons Blowflies model, and some models with Allee effects. Many interesting sufficient conditions are given for the dynamics that include nonlinear characteristics exhibited by population models. The last chapter provides results related to the global appeal of solutions to the models considered in the earlier chapters. The techniques used in this book can be easily understood by anyone with a basic knowledge of analysis. This book offers a valuable reference guide for students and researchers in the field of differential equations with applications to biology, ecology, and the environment.

Detalhes do Produto

    • Ano de Edição: 2014
    • Ano:  2016
    • País de Produção: Canada
    • Código de Barras:  2001026502590
    • ISBN:  9788132218951

Avaliação dos Consumidores

ROLAR PARA O TOPO