Aguarde...

UNSUPERVISED PROCESS MONITORING AND FAULT

DIAGNOSIS WITH MACHINE LEARNING METHODS


de: R$ 407,45

por: 

R$ 366,79preço +cultura

em até 10x de R$ 36,68 sem juros no cartão, ver mais opções

Produto disponível em até 15min no aplicativo Kobo, após a confirmação  do pagamento!

Sinopse

This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.

Detalhes do Produto

    • Ano de Edição: 2013
    • Ano:  2016
    • País de Produção: Canada
    • Código de Barras:  2001026300295
    • ISBN:  9781447151852

Avaliação dos Consumidores

ROLAR PARA O TOPO